일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Gate
- Logical statement
- Digital Logic Circuits
- Decimal notation
- 이진법 십진법 변환
- 항진명제
- Sentiment Analysis
- CNF
- 모두의네트워크요약
- GPT-1
- dnf
- half adder
- 십진법
- ermodel
- 모두의네트워크정리
- statement equivalence
- 명제
- Binary notation
- Circuit
- truth table
- 써킷
- relationaldatabaseschema
- 모두의네트워크
- 진리표
- full adder
- Tautology
- cnn
- Contradiction
- 명제 동치
- 모순명제
- Today
- Total
NLP Learner in Switzerland
Propositional Logic Exercise(logical statement, statement simplifying) 본문
Propositional Logic Exercise(logical statement, statement simplifying)
초코빵 2021. 5. 15. 05:00
Chapter : Propositional Logic
Topic : Logical statement, statement simplifying
Solution : b∨~d
1. 주어진 statement를 simplifying하는 문제이다.
2. (~a∧(a∨b))∨~d∨(b∧d)
≡ [(~a∧a)∨(~a∧b)]∨[(~d∨b)∧(~d∨d)] --- 분배법칙
≡ (~a∧b)∨(~d∨b) --- (~a∧a)=c / (~d∨d)=t
≡ ((~a∧b)∨b)∨~d --- 결합법칙으로 b랑 ~d의 자리를 바꿔준 것
≡ ((~a∧b)∨(b∧t))∨~d --- 여기가 좀 까다로운데 흡수법칙을 사용했다. (흡수법칙 : p∨(p∧q)≡p)
≡ (b∧(~a∨t))∨~d --- 분배법칙
≡ (b∧t)∨~d --- (~a∨t)=t
≡ b∨~d
1. Solution : ~a∨~b
1. 주어진 statement를 simplifying하는 문제이다.
2. (aXORb)∨~(a∨(b∧d))
≡ ((a∨b)∧~(a∧b))∨~((a∨b)∧(a∧d)) --- XOR의 개념 그대로 : aXORb = (a∨b)∧~(a∧b)
≡ ((a∨b)∧(~a∨~b))∨((~a∧~b)∨(~a∧~d)) --- 분배법칙
좌측 (a∨b)∧(~a∨~b) 부분만 먼저 풀면
≡ ((a∨b)∧~a)∨((a∨b)∧~b) --- 분배법칙
≡ (~a∧a)∨(~a∧b)∨(a∧~b)∨(b∧~b) --- 분배법칙
≡ (~a∧b)∨(a∧~b) --- (~a∧a)=c / (b∧~b)=c
다시 전체 식에 대입해주면
≡ (~a∧b)∨(a∧~b)∨(~a∧~b)∨(~a∧~d)
≡ (~a∧(b∨~b))∨(a∧~b)∨(~a∧~d) --- (~a∧b)∨(~a∧~b)를 묶어주었다
≡ ~a∨(a∧~b)∨(~a∧~d) --- (b∨~b)=t
≡ ~a∨(a∧~b) --- 흡수법칙 ~a∨(~a∧~d)≡~a
≡ (~a∨a)∧(~a∨~b) --- 분배법칙
≡ ~a∨~b --- (~a∨a)=t
1. Solution :
1. 주어진 statement를 simplifying하는 문제이다.
2. (~a∧~b∧~d)∨(~a∧b)∨(a∧b)∨(a∧~b∧~d)
≡ (~a∧~b∧~d)∨(a∧~b∧~d)∨(b∧(~a∨a)) --- 중간의 (~a∧b)∨(a∧b)에 분배법칙 적용
≡ (~a∧~b∧~d)∨(a∧~b∧~d)∨b --- (~a∨a)=t
≡ ((~b∧~d)∧(~a∨a))∨b --- 분배법칙
≡ (~b∧~d)∨b --- (~a∨a)=t
≡ (b∨~b)∧(b∨~d) --- 분배법칙
≡ b∨~d